Send to

Choose Destination
J Med Chem. 2006 Feb 9;49(3):850-63.

Novel benzodiazepine photoaffinity probe stereoselectively labels a site deep within the membrane-spanning domain of the cholecystokinin receptor.

Author information

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA.


An understanding of the molecular basis of drug action provides opportunities for refinement of drug properties and for development of more potent and selective molecules that act at the same biological target. In this work, we have identified the active enantiomers in racemic mixtures of structurally related benzophenone derivatives of 1,5-benzodiazepines, representing both antagonist and agonist ligands of the type A cholecystokinin receptor. The parent compounds of the 1,5-benzodiazepine CCK receptor photoaffinity ligands were originally prepared in an effort to develop orally active drugs. The enantiomeric compounds reported in this study selectively photoaffinity-labeled the CCK receptor, resulting in the identification of a site of attachment for the photolabile moiety of the antagonist probe deep within the receptor's membrane-spanning region at Leu(88), a residue within transmembrane segment two. In contrast, the agonist probe labeled a region including extracellular loop one and a portion of transmembrane segment three. The antagonist covalent attachment site to the receptor served as a guide in the construction of theoretical three-dimensional molecular models for the antagonist-receptor complex. These models provided a means for visualization of physically plausible ligand-receptor interactions in the context of all currently available biological data that address small molecule interactions with the CCK receptor. Our approach, featuring the use of novel photolabile compounds targeting the membrane-spanning receptor domain to probe the binding site region, introduces powerful tools and a strategy for direct and selective investigation of nonpeptidyl ligand binding to peptide receptors.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center