Format

Send to

Choose Destination
See comment in PubMed Commons below
J Agric Food Chem. 2006 Feb 8;54(3):739-46.

Comparison of effects of high-pressure processing and heat treatment on immunoactivity of bovine milk immunoglobulin G in enriched soymilk under equivalent microbial inactivation levels.

Author information

1
Department of Food Science and Technology, The Ohio State University, 110 Parker Building, 2015 Fyffe Road, Columbus, Ohio 43210, USA.

Abstract

Immunoglobulin-rich foods may provide health benefits to consumers. To extend the refrigerated shelf life of functional foods enriched with bovine immunoglobulin G (IgG), nonthermal alternatives such as high-pressure processing (HPP) may offer advantages to thermal processing for microbial reduction. To evaluate the effects of HPP on the immunoactivity of bovine IgG, a soymilk product enriched with milk protein concentrates, derived from dairy cows that were hyperimmunized with 26 human pathogens, was subjected to HPP or heat treatment. To achieve a 5 log reduction in inoculated Escherichia coli 8739, the HPP or heat treatment requirements were 345 MPa for 4 min at 30 degrees C or for 20 s at 70 degrees C, respectively. To achieve a 5 log reduction in natural flora in the enriched soymilk, the HPP or heat treatments needed were 552 MPa for 4 min at 30 degrees C or for 120 s at 78.2 degrees C, respectively. At equivalent levels for a 5 log reduction in E. coli, HPP and heat treatment caused 25% and no detectable loss in bovine IgG activity, respectively. However, at equivalent levels for a 5 log reduction in natural flora, HPP and heat resulted in 65 and 85% loss of bovine IgG activity, respectively. Results of combined pressure-thermal kinetic studies of bovine milk IgG activity were provided to determine the optimal process conditions to preserve product function.

PMID:
16448177
DOI:
10.1021/jf0516181
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center