Format

Send to

Choose Destination
FEMS Microbiol Lett. 2006 Jan;254(2):217-25.

Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR.

Author information

1
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.

Abstract

In Pseudomonas aeruginosa many of the clinically relevant resistance mechanisms result from changes in gene expression as exemplified by the Mex drug efflux pumps, the AmpC beta-lactamase and the carbapenem-specific porin OprD. We used quantitative real-time-PCR to analyze the expression of these genes in susceptible and antibiotic-resistant laboratory and clinical strains. In nalB mutants, which overexpress OprM, we observed a four- to eightfold increase in the expression of mexA, mexB, and oprM genes. MexX and mexY genes were induced eight to 12 times in the presence of 2 mg L(-1) tetracycline. The mexC/oprJ and mexE/oprN gene expression levels were increased 30- to 250-fold and 100- to 760-fold in nfxB and nfxC mutants, respectively. We further found that in defined laboratory strains expression levels of ampC and oprD genes paralleled beta-lactamase activity and OprD protein levels, respectively. Our data support the use of quantitative real-time-PCR chain reaction for the analysis of the antimicrobial resistance gene expression in P. aeruginosa.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center