Format

Send to

Choose Destination
Mol Cell Biochem. 2006 Feb;283(1-2):67-74.

Effect of Triphala on oxidative stress and on cell-mediated immune response against noise stress in rats.

Author information

1
Immunology Laboratory, Department of Physiology, Dr ALM.PG. Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, India.

Abstract

Stress is one of the basic factors in the etiology of number of diseases. The present study was aimed to investigate the effect of Triphala (Terminalia chebula, Terminalia belerica and Emblica officinalis) on noise-stress induced alterations in the antioxidant status and on the cell-mediated immune response in Wistar strain male albino rats. Noise-stress employed in this study was 100 dB for 4 h/d/15 days and Triphala was used at a dose of 1 g/kg/b.w/48 days. Eight different groups of rats namely, non-immunized: control, Triphala, noise-stress, Triphala with noise-stress, and corresponding immunized groups were used. Sheep red blood cells (5 x 10(9) cells/ml) were used to immunize the animals. Biochemical indicators of oxidative stress namely lipid peroxidation, antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), ascorbic acid in plasma and tissues (thymus and spleen) and SOD, GPx and corticosterone level in plasma were estimated. Cell-mediated immune response namely foot pad thickness (FPT) and leukocyte migration inhibition (LMI) test were performed only in immunized groups. Results showed that noise-stress significantly increased the lipid peroxidation and corticosterone level with concomitant depletion of antioxidants in plasma and tissues of both non-immunized and immunized rats. Noise-stress significantly suppressed the cell-mediated immune response by decreased FPT with an enhanced LMI test. The supplementation with Triphala prevents the noise-stress induced changes in the antioxidant as well as cell-mediated immune response in rats. This study concludes that Triphala restores the noise-stress induced changes may be due to its antioxidant properties.

PMID:
16444587
DOI:
10.1007/s11010-006-2271-0
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center