Format

Send to

Choose Destination
J Cell Biochem. 2006 Jun 1;98(3):642-9.

Knockdown of hypoxia-inducible factor-1alpha by siRNA inhibits C2C12 myoblast differentiation.

Author information

1
Department of Medicine & Science in Sports & Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan.

Abstract

We analyzed the role of Hypoxia-inducible factor (HIF)-1alpha in myoblast differentiation by examining the expression and regulation of HIF-1alpha in proliferating and differentiating C2C12 myoblast, and by knocking down HIF-1alpha of C2C12 myoblasts with small interfering RNA (siRNA), given that HIF-1alpha has been shown to be involved in differentiative process in non-muscle tissues. Although HIF-1alpha mRNA was constantly expressed in C2C12 myoblasts both under growth and differentiating phase, HIF-1alpha protein was hardly detectable in the growth phase but became detectable only during myogenic differentiation even under normoxia. During early stage of C2C12 myogenesis, HIF-1alpha accumulated in the nuclei of myogenin-positive myoblasts. The inhibition of proteasome in the growth phase led to HIF-1alpha protein accumulation, whereas in the differentiation phase the inhibition of Hsp90, which stabilizes HIF-1alpha, suppressed HIF-1alpha accumulation. Therefore, we suggest that the level of HIF-1alpha protein expression is regulated by a proteasome-and chaperon-dependent pathway in C2C12 myoblast. Knockdown of HIF-1alpha effectively blocked myotube formation and myosin heavy chain (MHC) expression. Finally, HIF-1alpha expression in vivo was confirmed in the regenerative muscle tissue of mice after eccentric exercise. We conclude that HIF-1alpha is required for C2C12 myogenesis in vitro, and suggest that HIF-1alpha may have an essential role in regenerative muscle tissue in vivo.

PMID:
16440321
DOI:
10.1002/jcb.20804
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center