Send to

Choose Destination
Nephrol Dial Transplant. 2006 May;21(5):1188-97. Epub 2006 Jan 24.

Ganoderma extract prevents albumin-induced oxidative damage and chemokines synthesis in cultured human proximal tubular epithelial cells.

Author information

Department of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong.



Ganoderma lucidum (Ganoderma or lingzhi) is widely used as an alternative medicine remedy to promote health and longevity. Recent studies have indicated that components extracted from Ganoderma have a wide range of pharmacological actions including suppressing inflammation and scavenging free radicals. We recently reported that tubular secretion of interleukin-8 (IL-8) induced by albumin is important in the pathogenesis of tubulointerstitial injury in the proteinuric state. In this study, we explored the protective effect of Ganoderma extract (LZ) on albumin-induced kidney epithelial injury.


Growth arrested human proximal tubular epithelial cells (PTECs) were incubated with 0.625 to 10 mg/ml human serum albumin (HSA) for up to 72 h. HSA induced DNA damage and apoptosis in PTEC in a dose- and time-dependent manner. Co-incubation of PTEC with 4-64 microg/ml LZ significantly reduced the oxidative damage and cytotoxic effect of HSA in a dose-dependent manner (P<0.001). Increased release of IL-8 and soluble intercellular adhesion molecules-1 (sICAM-1) in PTEC induced by HSA was ameliorated by co-incubation with Ganoderma (16 microg/ml). To explore the components of LZ that exhibited most protective effect in HSA-induced PTEC damages, LZ was further separated into two sub-fractions, LZF1 (MW <30 kDa) and LZF2 (MW <3 kDa), by molecular sieving using millipore membrane. PTEC were incubated with 5 mg/ml HSA in the presence of different doses of LZF1, LZF2 or unfractionated LZ.


There was no difference in the degree of protection from HSA-induced cytotoxicity or oxidative DNA damage between different fractions of LZ. However, low molecular weight LZ (<3 kDa) was most effective in reducing sICAM-1 released from HSA-activated PTEC whereas the high molecular weight LZ (unfractionated LZ) was more effective in diminishing IL-8 production.


Our results suggest that Ganoderma significantly reduces oxidative damages and apoptosis in PTEC induced by HSA. The differential reduction of IL-8 or sICAM-1 released from HSA-activated PTEC by different components of the LZ implicates that components of Ganoderma with different molecular weights could play different roles and operate different mechanisms in preventing HSA-induced PTEC damage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center