Send to

Choose Destination
Biochemistry. 2006 Jan 31;45(4):1227-33.

Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane.

Author information

National Research Council, Canadian Neutron Beam Centre, Chalk River, Ontario K0J 1J0, Canada.


Cholesterol and saturated lipid species preferentially partition into liquid ordered microdomains, such as lipid rafts, away from unsaturated lipid species for which the sterol has less affinity in the surrounding liquid-disordered membrane. To observe how cholesterol interacts with unsaturated phospholipids, we have determined, from one-dimensional neutron scattering length density profiles, the depth of cholesterol in phosphatidylcholine (PC) bilayers with varying amounts of acyl chain unsaturation. Through the use of [2,2,3,4,4,6-(2)H(6)]-labeled cholesterol, we show that in 1-palmitoyl-2-oleoylphosphatidylcholine (16:0-18:1 PC), 1,2-dioleoylphosphatidylcholine (18:1-18:1 PC), and 1-stearoyl-2-arachidonylphosphatidylcholine (18:0-20:4 PC) bilayers the center of mass of the deuterated sites is approximately 16 A from the bilayer center. This location places the hydroxyl group of the sterol moiety at the hydrophobic/hydrophilic bilayer interface, which is the generally accepted position. In dramatic contrast, for 20:4-20:4 PC membranes the hydroxyl group is found, unequivocally, sequestered in the bilayer center. We attribute the change in location to the high disorder of polyunsaturated fatty acids (PUFA) that is incompatible with close proximity to the steroid moiety in its usual "upright" orientation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center