Send to

Choose Destination
Cancer Lett. 2006 Dec 8;244(2):182-9. Epub 2006 Jan 20.

Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy.

Author information

Department of Pathology, The National Hospital-The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway.


Although photodynamic therapy (PDT) has been approved by regulatory agencies worldwide for the treatment of several oncologic and non-oncologic conditions, PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption limits the efficacy of this modality. This may largely be due to hypoxia-mediated angiogenesis via hypoxia-inducible factor-1alpha (HIF-1alpha), a major transcription factor involved in angiogenesis, hematopoiesis and anaerobic energy metabolism. We hypothesized that hypoxia-induced HIF-1alpha overexpression may also lead to tumor cells resistant to PDT by favouring tumor cell proliferation. Human esophageal normal Het-1A and tumor KYSE-70 and KYSE-450 cell lines were used in the present study. High-expression of HIF-1alpha induced in vitro by cobalt chloride (CoCl(2))-mediated chemical hypoxia mimic was clearly seen in the Het-1A cell line. In addition, cells treated with CoCl(2) were more resistant to 5-aminolevulinic acid (ALA)-mediated PDT than those without CoCl(2) treatment. The photosensitivity of the cells to ALA-PDT decreased with increasing HIF-1alpha expression by enhancing CoCl(2) concentrations. Moreover, transfection of the cells with anti-HIF-1alpha short interfering RNA (siRNA) knocked down the HIF-1alpha expression and restored the photosensitivity of the cells to ALA-PDT. However, the induction of HIF-1alpha expression by CoCl(2) was not indicated in both KYSE-70 and KYSE-450 cell lines, and no difference in cell survival was found after ALA-PDT in the presence and absence of CoCl(2). We thus conclude that high-expression of HIF-1alpha induced by CoCl(2) plays an important role in the resistance of the Het-1A cells to ALA-PDT. The present finding suggests that hypoxia-induced HIF-1alpha overexpression attenuates PDT efficacy through probably not only angiogenesis, but also cellular resistance to the modality. PDT in combination with anti-HIF-1alpha treatment may thus enhance the PDT efficacy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science Icon for Norwegian BIBSYS system
Loading ...
Support Center