Format

Send to

Choose Destination
Waste Manag. 2006;26(12):1468-76. Epub 2006 Jan 19.

The characterization of waste cathode-ray tube glass.

Author information

1
Laboratoire de Physicochimie de la Matière Condensée, UMR CNRS 5617, Equipe de Recherche Technologique 3 "Caractérisation des Matériaux", Université Montpellier II, CC 003, Place E. Bataillon, F-34095 Montpellier, Cedex 5, France. fmear@lpmc.univ-montp2.fr

Abstract

New re-use applications are needed to address the relatively large quantity of waste electronic products generated in the world. Cathode-ray tubes (CRTs) from computer monitors and TV sets are a large component of such waste. The three glass components of CRTs are the funnel, panel and neck, which are produced by various manufacturers and are now collected by asset-recovery centres. In this paper, we characterize waste funnel and panel glass from dismantled cathode-ray tubes with a view to assisting the development of new re-use applications. The heavy metal (lead, barium, and strontium) content of such glass represents an acute risk to the environment. Our results of the chemical composition for different kinds of waste CRT glass including black & white and color CRTs show that CRT glass from different producers have generally similar chemical compositions. In particular, the compositions of funnel and panel black & white CRT glass are similar, but are different to those of panel and funnel color CRT glass. We also measured the following specific properties of each type of CRT glass: density, glass transition temperature, and linear coefficient of thermal expansion. It was found that the coefficients of thermal expansion of CRT glass do not vary with their composition. In contrast, the measured densities and glass transition temperatures do vary with composition. On the basis of our experimental data and data found in the literature, we outline the main properties of several waste CRT glass currently in circulation. The aim of this study was to provide the data required to determine if this kind of waste could be entirely (or partially) re-used and to aid the search for promising methods of treatment.

PMID:
16427267
DOI:
10.1016/j.wasman.2005.11.017
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center