Send to

Choose Destination
Int J Cancer. 2006 May 15;118(10):2390-8.

Increased PTEN expression due to transcriptional activation of PPARgamma by Lovastatin and Rosiglitazone.

Author information

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.


Germline mutations in the tumor suppressor gene PTEN (protein phosphatase and tensin homolog located on chromosome ten) predispose to heritable breast cancer. The transcription factor PPARgamma has also been implicated as a tumor suppressor pertinent to a range of neoplasias, including breast cancer. A putative PPARgamma binding site in the PTEN promoter indicates that PPARgamma may regulate PTEN expression. We show here that the PPARgamma agonist Rosiglitazone, along with Lovastatin, induce PTEN in a dose- and time-dependent manner. Lovastatin- or Rosiglitazone-induced PTEN expression was accompanied by a decrease in phosphorylated-AKT and phosphorylated-MAPK and an increase in G1 arrest. We demonstrate that the mechanism of Lovastatin- and Rosiglitazone-associated PTEN expression was a result of an increase in PTEN mRNA, suggesting that this increase was transcriptionally-mediated. Compound-66, an inactive form of Rosiglitazone, which is incapable of activating PPARgamma, was unable to elicit the same response as Rosiglitazone, signifying that the Rosiglitazone response is PPARgamma-mediated. To support this, we show, using reporter assays including dominant-negative constructs of PPARgamma, that both Lovastatin and Rosiglitazone specifically mediate PPARgamma activation. Additionally, we demonstrated that cells lacking PTEN or PPARgamma were unable to induce PTEN mediated cellular events in the presence of Lovastatin or Rosiglitazone. These data are the first to demonstrate that Lovastatin can signal through PPARgamma and directly demonstrate that PPARgamma can upregulate PTEN at the transcriptional level. Since PTEN is constitutively active, our data indicates it may be worthwhile to examine Rosiglitazone and Lovastatin stimulation as mechanisms to increase PTEN expression for therapeutic and preventative strategies including cancer, diabetes mellitus and cardiovascular disease.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center