Format

Send to

Choose Destination
See comment in PubMed Commons below

Oxytocin actions within the supraoptic and paraventricular nuclei: differential effects on peripheral and intranuclear vasopressin release.

Author information

  • 1Institute of Zoology, Department of Behavioural Neuroendocrinology, University of Regensburg, Resenburg, Germany. inga.neumann@biologie.uni-regensburg.de

Abstract

In response to forced swimming (FS), AVP is released somato-dendritically within the supraoptic nucleus (SON) and paraventricular nucleus (PVN), but not from neurohypophyseal terminals into blood. Together with AVP, oxytocin (OXT) is released within the SON and PVN. Here, we studied the role of intra-SON and intra-PVN OXT in the regulation of local AVP release and into the blood in male rats. Within the SON, bilateral retrodialysis of an OXT receptor antagonist (OXT-A) increased local AVP release in response to FS [60 s, 21 degrees C, vehicle twofold, not significant (ns); OXT-A: 15-fold increase, P < 0.05] without significantly affecting basal AVP release. In addition, local OXT-A elevated plasma AVP secretion under basal conditions (twofold increase, P < 0.05) without further elevation after FS. Within the PVN, exposure to FS elevated local AVP release, reaching significance only in the OXT-A group (vehicle: 1.4-fold, ns; OXT-A: 1.6-fold increase, P = 0.050). Bilateral OXT-A into the PVN did not affect peripheral AVP secretion either under basal or stress conditions. Basal ACTH concentrations tended to be elevated by local OXT-A within the PVN (1.7-fold increase, P = 0.076). In contrast, the swim-induced ACTH secretion was attenuated after retrodialysis of OXT-A within both the SON (at 5 min) and PVN (at 15 min) (P < 0.05 both) compared with vehicle. The results demonstrate a receptor-mediated effect of OXT within the SON and PVN on local and neurohypophyseal AVP release, which depends upon the activity conditions. Further, while exerting an inhibitory effect on hypothalamo-pituitary-adrenal axis activity under basal conditions, hypothalamic OXT is essential for an adequate acute ACTH response.

PMID:
16424083
DOI:
10.1152/ajpregu.00763.2005
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center