Send to

Choose Destination
See comment in PubMed Commons below
Protein Eng Des Sel. 2006 Mar;19(3):99-105. Epub 2006 Jan 19.

Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides.

Author information

Department of Chemical and Environmental Engineering, University of California, Riverside, 92521, USA.


Organophosphorus hydrolase (OPH, also known as phosphotriesterase) is a bacterial enzyme that is capable of degrading a wide range of neurotoxic organophosphate nerve agents. Directed evolution has been used to generate one variant (22A11) with up to 25-fold improved hydrolysis of methyl parathion. Surprisingly, this variant also degraded all other substrates (paraoxon, parathion and coumaphos) tested 2- to 10-fold faster. Since only one mutation (H257Y) is directly located in the active site, site-directed mutagenesis and saturation mutagenesis were used to identify the role of the other distal substitutions (A14T, A80V, K185R, H257Y, I274N) on substrate specificity and activity. Sequential site-directed mutagenesis indicated that K185R and I274N are the most important substitutions, leading to an improvement not only in the hydrolysis of methyl parathion but also the overall hydrolysis rate of all other substrates tested. Using structural modeling, these two mutations were shown to favor the formation of hydrogen bonds with nearby residues, resulting in structural changes that could alter the overall substrate hydrolysis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center