Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Apr 14;281(15):10431-8. Epub 2006 Jan 17.

Fatty acid amide hydrolase determines anandamide-induced cell death in the liver.

Author information

Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.


The endocannabinoid anandamide (AEA) induces cell death in many cell types, but determinants of AEA-induced cell death remain unknown. In this study, we investigated the role of the AEA-degrading enzyme fatty acid amide hydrolase (FAAH) in AEA-induced cell death in the liver. Primary hepatocytes expressed high levels of FAAH and were completely resistant to AEA-induced cell death, whereas primary hepatic stellate cells (HSCs) expressed low levels of FAAH and were highly sensitive to AEA-induced cell death. Hepatocytes that were pretreated or with the FAAH inhibitor URB597 isolated from FAAH(-/-) mice displayed increased AEA-induced reactive oxygen species (ROS) formation and were susceptible to AEA-mediated death. Conversely, overexpression of FAAH in HSCs prevented AEA-induced death. Since FAAH inhibition conferred only partial AEA sensitivity in hepatocytes, we analyzed additional factors that might regulate AEA-induced death. Hepatocytes contained significantly higher levels of glutathione (GSH) than HSCs. Glutathione depletion by dl-buthionine-(S,R)-sulfoximine rendered hepatocytes susceptible to AEA-mediated ROS production and cell death, whereas GSH ethyl ester prevented ROS production and cell death in HSCs. FAAH inhibition and GSH depletion had additive effects on AEA-mediated hepatocyte cell death resulting in almost 70% death after 24 h at 50 microm AEA and lowering the threshold for cell death to 500 nm. Following bile duct ligation, FAAH(-/-) mice displayed increased hepatocellular injury, suggesting that FAAH protects hepatocytes from AEA-induced cell death in vivo. In conclusion, FAAH and GSH are determinants of AEA-mediated cell death in the liver.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center