Send to

Choose Destination
See comment in PubMed Commons below
J Food Prot. 2006 Jan;69(1):71-9.

Cross-contamination between processing equipment and deli meats by Listeria monocytogenes.

Author information

Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA.


Contamination of luncheon meats by Listeria monocytogenes has resulted in outbreaks of listeriosis and major product recalls. Listeriae can survive on processing equipment such as meat slicers which serve as a potential contamination source. This study was conducted to determine (i) the dynamics of cross-contamination of L. monocytogenes from a commercial slicer and associated equipment onto sliced meat products, (ii) the influence of sample size on the efficacy of the BAX-PCR and U.S. Department of Agriculture-Food Safety and Inspection Service enrichment culture assays to detect L. monocytogenes on deli meat, and (iii) the fate of L. monocytogenes on sliced deli meats of different types during refrigerated storage. Three types of deli meats, uncured oven-roasted turkey, salami, and bologna containing sodium diacetate and potassium lactate, were tested. A five-strain mixture of L. monocytogenes was inoculated at ca.10(3) CFU onto the blade of a commercial slicer. Five consecutive meat slices were packed per package, then vacuum sealed, stored at 4 degrees C, and sampled at 1 and 30 days postslicing. Two sample sizes, 25 g and contents of the entire package of meat, were assayed. Total numbers of L. monocytogenes-positive samples, including the two sample sizes and two sampling times, were 80, 9, and 3 for turkey, salami, and bologna, respectively. A higher percentage of turkey meat samples were L. monocytogenes positive when contents of the entire package were assayed than when the 25-g sample was assayed (12.5 and 7.5%, respectively). Lower inoculum populations of ca. 10(1) or 10(2) CFU of L. monocytogenes on the slicer blade were used for an additional evaluation of oven-roasted turkey using two additional sampling times of 60 and 90 days postslicing. L. monocytogenes-positive samples were not detected until 60 days postslicing, and more positive samples were detected at 90 days than at 60 days postslicing. When BAX-PCR and enrichment culture assays were compared, 12, 8, and 2 L. monocytogenes-positive samples were detected by both the enrichment culture and BAX-PCR, BAX-PCR only, and enrichment culture only assays, respectively. The number of L. monocytogenes-positive samples and L. monocytogenes counts increased during storage of turkey meat but decreased for salami and bologna. Significantly more turkey samples were L. monocytogenes positive when the contents of the entire package were sampled than when 25 g was sampled. Our results indicate that L. monocytogenes can be transferred from a contaminated slicer onto meats and can survive or grow better on uncured oven-roasted turkey than on salami or bologna with preservatives. Higher L. monocytogenes cell numbers inoculated on the slicer blade resulted in more L. monocytogenes-positive sliced meat samples. In addition, the BAX-PCR assay was better than the enrichment culture assay at detecting L. monocytogenes on turkey meat (P < 0.05).

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center