Format

Send to

Choose Destination
J Mol Biol. 2006 Mar 17;357(1):163-72. Epub 2006 Jan 3.

Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.

Author information

1
Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-5115, USA.

Abstract

Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.

PMID:
16414074
DOI:
10.1016/j.jmb.2005.12.046
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center