Format

Send to

Choose Destination
FEBS Lett. 2006 Feb 6;580(3):755-62. Epub 2006 Jan 9.

Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274).

Author information

1
Department of Microbiology, Inje University College of Medicine, Busan 614-735, Republic of Korea.

Abstract

Majority of cancer cells upregulate co-inhibitory molecule B7-H1 which confers resistance to anti-tumor immunity, allowing cancers to escape from host immune surveillance. We addressed the molecular mechanism underlying the regulation of cancer-associated B7-H1 expression in response to interferon-gamma (IFN-gamma). Using promoter constructs in luciferase assay, the region between 202 and 320 bp from the translational start site is responsible for B7-H1 expression. Electrophoretic mobility shift assay, site-directed mutagenesis and knockdown experiment using siRNA revealed that interferon regulatory factor-1 (IRF-1) is primarily responsible for the constitutive B7-H1 expression as well as for the IFN-gamma-mediated B7-H1 upregulation in a human lung cancer cell line A549. Additionally, AG490, a Janus activated kinase/signal transducer and activator of transcription inhibitor, greatly abolished the responsiveness of A549 cells to IFN-gamma by reducing the IRF-1 transcription. Our findings support a critical role of IRF-1 in the regulation of constitutive and IFN-gamma-induced expression of B7-H1 in cancer cells.

PMID:
16413538
DOI:
10.1016/j.febslet.2005.12.093
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center