Format

Send to

Choose Destination
J Biol Chem. 2006 Mar 3;281(9):5797-803. Epub 2005 Dec 27.

Docking studies show that D-glucose and quercetin slide through the transporter GLUT1.

Author information

1
Bioinformatics, Franklin-Wilkins Building, King's College London, London SE1 9NH, United Kingdom.

Abstract

On a three-dimensional templated model of GLUT1 (Protein Data Bank code 1SUK), a molecular recognition program, AUTODOCK 3, reveals nine hexose-binding clusters spanning the entire "hydrophilic" channel. Five of these cluster sites are within 3-5 A of 10 glucose transporter deficiency syndrome missense mutations. Another three sites are within 8 A of two other missense mutations. D-glucose binds to five sites in the external channel opening, with increasing affinity toward the pore center and then passes via a narrow channel into an internal vestibule containing four lower affinity sites. An external site, not adjacent to any mutation, also binding phloretin but recognizing neither D-fructose nor L-glucose, may be the main threading site for glucose uptake. Glucose exit from human erythrocytes is inhibited by quercetin (K(i) = 2.4 mum) but not anionic quercetin-semiquinone. Quercetin influx is retarded by extracellular D-glucose (50 mm) but not by phloretin and accelerated by intracellular D-glucose. Quercetin docking sites are absent from the external opening but fill the entire pore center. In the inner vestibule, Glu(254) and Lys(256) hydrogen-bond quercetin (K(i) approximately 10 microm) but not quercetin-semiquinone. Consistent with the kinetics, this site also binds D-glucose, so quercetin displacement by glucose could accelerate quercetin influx, whereas quercetin binding here will competitively inhibit glucose efflux. Beta-D-hexoses dock twice as frequently as their alpha-anomers to the 23 aromatic residues in the transport pathway, suggesting that endocyclic hexose hydrogens, as with maltosaccharides in maltoporins, form pi-bonds with aromatic rings and slide between sites instead of being translocated via a single alternating site.

PMID:
16407180
DOI:
10.1074/jbc.M509422200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center