Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2006 Apr 1;30(2):359-76. Epub 2006 Jan 9.

The creation of a brain atlas for image guided neurosurgery using serial histological data.

Author information

1
McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, 3801, University St., Montréal, Canada H3A 2B4. mallar@bic.mni.mcgill.ca

Abstract

Digital and print brain atlases have been used with success to help in the planning of neurosurgical interventions. In this paper, a technique presented for the creation of a brain atlas of the basal ganglia and the thalamus derived from serial histological data. Photographs of coronal histological sections were digitized and anatomical structures were manually segmented. A slice-to-slice nonlinear registration technique was used to correct for spatial distortions introduced into the histological data set at the time of acquisition. Since the histological data were acquired without any anatomical reference (e.g., block-face imaging, post-mortem MRI), this registration technique was optimized to use an error metric which calculates a nonlinear transformation minimizing the mean distance between the segmented contours between adjacent pairs of slices in the data set. A voxel-by-voxel intensity correction field was also estimated for each slice to correct for lighting and staining inhomogeneity. The reconstructed three-dimensional (3D) histological volume can be viewed in transverse and sagittal directions in addition to the original coronal. Nonlinear transformations used to correct for spatial distortions of the histological data were applied to the segmented structure contours. These contours were then tessellated to create three-dimensional geometric objects representing the different anatomic regions in register with the histological volumes. This yields two alternate representations (one histological and one geometric) of the atlas. To register the atlas to a standard reference MR volume created from the average of 27 T1-weighted MR volumes, a pseudo-MRI was created by setting the intensity of each anatomical region defined in the geometric atlas to match the intensity of the corresponding region of the reference MR volume. This allowed the estimation of a 3D nonlinear transformation using a correlation based registration scheme to fit the atlas to the reference MRI. The result of this procedure is a contiguous 3D histological volume, a set of 3D objects defining the basal ganglia and thalamus, both of which are registered to a standard MRI data set, for use for neurosurgical planning.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center