Format

Send to

Choose Destination
Physiol Genomics. 2006 Apr 13;25(2):203-15. Epub 2006 Jan 10.

Gene expression profiles of peripheral blood leukocytes after endotoxin challenge in humans.

Author information

1
Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892-1662, USA.

Abstract

To define gene expression profiles that occur during the initial activation of human innate immunity, we administered intravenous endotoxin (n = 8) or saline (n = 4) to healthy subjects and hybridized RNA from blood mononuclear cells (0, 0.5, 6, 24, 168 h) or whole blood (0, 3, 6, 24, 168 h) to oligonucleotide probe arrays. The greatest change in mononuclear cell gene expression occurred at 6 h (439 induced and 428 repressed genes, 1% false discovery rate, and 50% fold change) including increased expression of genes associated with pathogen recognition molecules and signaling cascades linked to receptors associated with cell mobility and activation. Induced defense response genes included cytokines, chemokines, and their respective receptors, acute-phase transcription factors, proteases, arachidonate metabolites, and oxidases. Repressed defense response genes included those associated with co-stimulatory molecules, T and cytotoxic lymphocytes, natural killer (NK) cells, and protein synthesis. Gene expression profiles of whole blood had similar biological themes. Over 100 genes not typically associated with acute inflammation were differentially regulated after endotoxin. By 24 h, gene expression had returned to baseline values. Thus the inflammatory response of circulating leukocytes to endotoxin in humans is characterized by a rapid amplification and subsidence of gene expression. These results indicate that a single intravascular exposure to endotoxin produces a large but temporally short perturbation of the blood transcriptome.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center