Send to

Choose Destination
J Am Chem Soc. 2006 Jan 18;128(2):404-5.

Direct observation of enhanced translocation of a homeodomain between DNA cognate sites by NMR exchange spectroscopy.

Author information

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.


A novel approach is presented for studying the kinetics of specific protein-DNA interactions by NMR exchange spectroscopy. The experimental design involves the direct observation of translocation of a homeodomain between cognate sites on two oligonucleotide duplexes, differing by only a single base pair at the edge of the DNA recognition sequence. The single base-pair change perturbs the 1H-15N correlation spectrum of a number of residues, while leaving the affinity for the DNA unchanged. The exchange process has apparent rate constants in the 5-20 s-1 range which are linearly dependent upon the concentration of free DNA. These rates are about 3 orders of magnitude larger than the dissociation rate constant determined by gel shift assays at nanomolar DNA concentrations. The complete NMR exchange data set, comprising auto- and cross-peak intensities as a function of mixing time at five concentrations of free DNA, can be fit simultaneously to a simple model in which protein translocation between DNA duplexes occurs via a second-order process (with rate constants of approximately 6 x 104 M-1 s-1) involving direct collision of a protein-DNA complex with free DNA. This is akin to intersegmental transfer, and a physical model for the process is discussed. Rapid translocation at high concentrations of free DNA observed directly by NMR exchange spectroscopy reconciles the long half-lives of protein-DNA complexes measured by biochemical analysis in vitro with the highly dynamic behavior of such complexes observed in vivo. The relevance of this mechanism to the kinetics of protein-DNA interactions within the cell is discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center