Format

Send to

Choose Destination
Nano Lett. 2006 Jan;6(1):73-7.

Reciprocating power generation in a chemically driven synthetic muscle.

Author information

1
The Polymer Centre, Department of Chemistry, The University of Sheffield, UK.

Abstract

A scalable synthetic muscle has been constructed that transducts nanoscale molecular shape changes into macroscopic motion. The working material, which deforms affinely in response to a pH stimulus, is a self-assembled block copolymer comprising nanoscopic hydrophobic domains in a weak polyacid matrix. A device has been assembled where the muscle does work on a cantilever and the force generated has been measured. When coupled to a chemical oscillator this provides a free running chemical motor that generates a peak power of 20 mW kg(-1) by the serial addition of 10 nm shape changes that scales over 5 orders of magnitude. It is the nanostructured nature of the gel that gives rise to the affine deformation and results in a robust working material for the construction of scalable muscle devices.

PMID:
16402790
DOI:
10.1021/nl0520617
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center