Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2006 Jun;290(6):H2247-56. Epub 2006 Jan 6.

Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury.

Author information

Cardiovascular Research Center, Dept. of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 409 Lane Road, Charlottesville, VA 22908, USA.


The glycocalyx (Gcx) is a complex and poorly understood structure covering the luminal surface of endothelial cells. It is known to be a determinant of vascular rheology and permeability and may be a key control site for the vascular injuries caused by ischemia-reperfusion (I/R). We used intravital-microscopy to evaluate the effects of I/R injury on two properties of Gcx in mouse cremasteric microvessels: exclusion of macromolecules (anionic-dextrans) and intracapillary distribution of red blood cells (RBC). In this model, the Gcx is rapidly modified by I/R injury with an increase in 70-kDa anionic-dextran penetration without measurable effect on the penetration of 580-kDa anionic-dextran or on RBC exclusion. The effects of I/R injury appear to be mediated by the rapid production of reactive oxygen species (ROS) because they are ameliorated by the addition of exogenous superoxide dismutase-catalase. Intravenous application of allopurinol or heparin also inhibited the effects of I/R injury, and we interpret efficacy of allopurinol as evidence for a role for xanthine-oxidoreductase (XOR) in the response to I/R injury. Heparin, which is hypothesized to displace XOR from a heparin-binding domain in the Gcx, reduced the effects of I/R. The effects of I/R injury were also partially prevented or fully reversed by the intravascular infusion of exogenous hyaluronan. These data demonstrate: 1) the liability of Gcx during I/R injury; 2) the importance of locally produced ROS in the injury to Gcx; and 3) the potential importance of heparin-binding sites in modulating the ROS production. Our findings further highlight the relations between glycosaminoglycans and the pathophysiology of Gcx in vivo.

Comment in

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center