Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Health Perspect. 2006 Jan;114(1):100-5.

Estrogen-like properties of fluorotelomer alcohols as revealed by mcf-7 breast cancer cell proliferation.

Author information

1
Laboratory for Ecophysiology, Biochemistry, and Toxicology, University of Antwerp, Antwerp, Belgium. marleen.maras@ua.ac.be

Abstract

We investigated estrogen-like properties of five perfluorinated compounds using a combination of three in vitro assays. By means of an E-screen assay, we detected the proliferation-promoting capacity of the fluorotelomer alcohols 1H,1H,2H,2H-perfluorooctan-1-ol (6:2 FTOH) and 1H,1H,2H,2H-perfluoro-decan-1-ol (8:2 FTOH). The more widely environmentally distributed compounds perfluoro-1-octane sulfonate, perfluorooctanoic acid, and perfluorononanoic acid did not seem to possess this hormone-dependent proliferation capacity. We investigated cell cycle dynamics using flow cytometric analyses of the DNA content of the nuclei of MCF-7 breast cancer cells. Exposure to both fluorotelomer alcohols stimulated resting MCF-7 cells to reenter the synthesis phase (S-phase) of the cell cycle. After only 24 hr of treatment, we observed significant increases in the percentage of cells in the S-phase. In order to further investigate the resemblance of the newly detected xenoestrogens to the reference compound 17beta-estradiol (E2), gene expression of a number of estrogen-responsive genes was analyzed by real-time polymerase chain reaction. With E2, as well as 4-nonylphenol and the fluorotelomer alcohols, we observed up-regulation of trefoil factor 1, progesterone receptor, and PDZK1 and down-regulation of ERBB2 gene expression. We observed small but relevant up-regulation of the estrogen receptor as a consequence of exposures to 6:2 FTOH or 8:2 FTOH. The latter finding suggests an alternative mode of action of the fluorotelomer alcohols compared with that of E2. This study clearly underlines the need for future in vivo testing for specific endocrine-related end points.

PMID:
16393665
PMCID:
PMC1332663
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center