Send to

Choose Destination
Horm Behav. 2006 Apr;49(4):519-26. Epub 2006 Jan 4.

Self-administration of estrogen and dihydrotestosterone in male hamsters.

Author information

Neuroscience Program, Department of Cell and Neurobiology, Keck School of Medicine at the University of Southern California, 1333 San Pablo St., BMT 401, 90033, USA.


Anabolic-androgenic steroids (AAS) are drugs of abuse. Previous studies have shown that male and female hamsters self-administer testosterone (T) and other AAS, suggesting that androgens are reinforcing in a context where athletic performance is irrelevant. AAS are synthetic derivatives of T, which may be aromatizable to estrogen and/or reducible to dihydrotestosterone (DHT). However, we do not know which metabolites of T are reinforcing. To determine if DHT, estradiol (E(2)), or DHT + E(2) are reinforcing, we tested intracerebroventricular (icv) self-administration in male hamsters. The hypothesis was that androgen reinforcement is sensitive to both androgenic and estrogenic T metabolites. If so, hamsters would self-administer DHT, E(2), and DHT + E(2). Twenty four castrated male hamsters (n = 8/group) received icv cannulas and sc T implants for physiologic androgen replacement. One week later, hamsters self-administered DHT (0.1, 1.0, 2.0 microg/microl), E(2) (0.001, 0.01, 0.02 microg/microl), or DHT + E(2), each for 8 days in increasing concentration (4 h/day). Operant chambers were equipped with an active and inactive nose-poke. At the medium concentration, hamsters self-administered DHT (active nose-poke: 47.9 +/- 13.9 responses/4 h vs. inactive: 18.7 +/- 4.8), E(2) (active: 44.8 +/- 14.9 vs. inactive: 16.6 +/- 2.6), and DHT + E(2) (active: 19.1 +/- 2.4 vs. inactive: 10.4 +/- 2.4, P < 0.05). At the highest concentration, males self-administered DHT (active: 28.3 +/- 7.7 vs. inactive: 15.0 +/- 3.5, P < 0.05) and DHT + E(2) (active: 22.6 +/- 3.8 vs. inactive: 11.6 +/- 2.5, P < 0.05), but not E(2). Hamsters did not self-administer the lowest concentrations of DHT, E(2), or DHT + E(2). These results support our hypothesis that both androgenic and estrogenic T metabolites are reinforcing. Together, they do not exert synergistic effects.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science Icon for USC Health Sciences Libraries
Loading ...
Support Center