Send to

Choose Destination
J Chromatogr A. 2006 Jul 7;1120(1-2):237-43. Epub 2005 Dec 28.

Analysis of monoamine oxidase enzymatic activity by reversed-phase high performance liquid chromatography and inhibition by beta-carboline alkaloids occurring in foods and plants.

Author information

Spanish Council for Scientific Research, CSIC, Instituto de Fermentaciones Industriales, Juan de la Cierva 3, 28006 Madrid, Spain.


Monoamine oxidase (MAO) is a flavin adenine dinucleotide (FAD)-containing enzyme located at the outer membranes of mitochondria that catalyzes the oxidative deamination of biogenic and xenobiotic amines. We have used a chromatographic method to measure MAO-enzymatic activity by using kynuramine as a non-selective substrate with its MAO-oxidation product subsequently analyzed by RP-HPLC-DAD and HPLC-mass spectrometry (MS). This method was applied to study the kinetic parameters, inhibition and reaction products of MAO recombinant enzymes in presence of tetrahydro-beta-carboline and beta-carboline alkaloids occurring in foods, plants and mammals. Analysis by HPLC showed that tetrahydro-beta-carbolines or beta-carbolines were not modified by MAO. Several beta-carbolines such as tryptoline (1,2,3,4-tetrahydro-beta-carboline) and 1-methyltryptoline (1-methyl-1,2,3,4-tetrahydro-beta-carboline) were inhibitors of MAO-A; instead their corresponding 6-hydroxy-derivatives (6-hydroxytryptoline and 6-hydroxy-1-methyltryptoline) lacked this activity. Tetrahydro-beta-carboline-3-carboxylic acids were unable to inhibit MAO enzymes. In contrast, their oxidation products, i.e. the fully aromatic beta-carbolines (norharman and harman), acted as good inhibitors of MAO. Two tetrahydro-beta-carbolines (i.e. tryptoline and 1-methyltryptoline) occurring in foods were isolated by solid-phase extraction (SPE) and RP-HPLC from selected samples of sausages and the corresponding extracts exhibited good inhibition properties over MAO-A. These results suggest that beta-carbolines from foods, plants, and mammals may exert inhibitory actions on MAO enzymes.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center