Send to

Choose Destination
Diabetologia. 2006 Feb;49(2):360-8. Epub 2005 Dec 28.

Changes in hepatic glycogen cycling during a glucose load in healthy humans.

Author information

Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.



Glycogen cycling, i.e. simultaneous glycogen synthesis and glycogenolysis, affects estimates of glucose fluxes using tracer techniques and may contribute to hyperglycaemia in diabetic conditions. This study presents a new method for quantifying hepatic glycogen cycling in the fed state. Glycogen is synthesised from glucose by the direct and indirect (gluconeogenic) pathways. Since glycogen is also synthesised from glycogen, i.e. glycogen-->glucose 1-phosphate-->glycogen, that synthesised through the direct and indirect pathways does not account for 100% of glycogen synthesis. The percentage contribution of glycogen cycling to glycogen synthesis then equals the difference between the sum of the percentage contributions of the direct and indirect pathways and 100.


The indirect and direct pathways were measured independently in nine healthy volunteers who had fasted overnight. They ingested (2)H(2)O (5 ml/kg body water) and were infused with [5-(3)H]glucose and acetaminophen (paracetamol; 1 g) during hyperglycaemic clamps (7.8 mmol/l) lasting 8 h. The percentage contribution of the indirect pathway was calculated from the ratio of (2)H enrichments at carbon 5 to that at carbon 2, and the contribution of the direct pathway was determined from the (3)H-specific activity, relative to plasma glucose, of the urinary glucuronide excreted between 2 and 4, 4 and 6, and 6 and 8 h.


Glucose infusion rates increased (p<0.01) to approximately 50 mumol kg(-1) min(-1). Plasma insulin and the insulin : glucagon ratio rose approximately 3.6- and approximately 8.3-fold (p<0.001), respectively. From the difference between 100% and the sum of the direct (2-4 h, 54+/-6%; 4-6 h, 59+/-5%; 6-8 h, 63+/-4%) and indirect (32+/-3, 38+/-4, 36+/-3%) pathways, glycogen cycling was seen to be decreased (p<0.05) from 14+/-4% (2-4 h) to 4+/-3% (4-6 h) and 1+/-3% (6-8 h).


This method allows measurement of hepatic glycogen cycling in the fed state and demonstrates that glycogen cycling occurs most in the early hours after glucose loading subsequent to a fast.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center