Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell. 2005 Dec 29;123(7):1241-53.

In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets.

Author information

1
Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720, USA.

Abstract

Transcriptional dysregulation has emerged as a potentially important pathogenic mechanism in Huntington's disease, a neurodegenerative disorder associated with polyglutamine expansion in the huntingtin (htt) protein. Here, we report the development of a biochemically defined in vitro transcription assay that is responsive to mutant htt. We demonstrate that both gene-specific activator protein Sp1 and selective components of the core transcription apparatus, including TFIID and TFIIF, are direct targets inhibited by mutant htt in a polyglutamine-dependent manner. The RAP30 subunit of TFIIF specifically interacts with mutant htt both in vitro and in vivo to interfere with formation of the RAP30-RAP74 native complex. Importantly, overexpression of RAP30 in cultured primary striatal cells protects neurons from mutant htt-induced cellular toxicity and alleviates the transcriptional inhibition of the dopamine D2 receptor gene by mutant htt. Our results suggest a mutant htt-directed repression mechanism involving multiple specific components of the basal transcription apparatus.

PMID:
16377565
DOI:
10.1016/j.cell.2005.10.030
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center