Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2005 Nov 1;123(17):174101.

Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional.

Author information

  • 1Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA.

Abstract

This work assesses the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional for the prediction of lattice constants and band gaps using a set of 40 simple and binary semiconductors. An extensive analysis of both basis set and relativistic effects is given. Results are compared with established pure density functionals. For lattice constants, HSE outperforms local spin-density approximation (LSDA) with a mean absolute error (MAE) of 0.037 A for HSE vs 0.047 A for LSDA. For this specific test set, all pure functionals tested produce MAEs for band gaps of 1.0-1.3 eV, consistent with the very well-known fact that pure functionals severely underestimate this property. On the other hand, HSE yields a MAE smaller than 0.3 eV. Importantly, HSE correctly predicts semiconducting behavior in systems where pure functionals erroneously predict a metal, such as, for instance, Ge. The short-range nature of the exchange integrals involved in HSE calculations makes their computation notably faster than regular hybrid functionals. The current results, paired with earlier work, suggest that HSE is a fast and accurate alternative to established density functionals, especially for solid state calculations.

PMID:
16375511
DOI:
10.1063/1.2085170
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center