Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 2005 Dec 22;48(6):1039-53.

Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons.

Author information

1
Department of Biology, Boston University, Boston, Massachusetts 02215, USA. mcgann@bu.edu

Abstract

Input to the central nervous system from olfactory sensory neurons (OSNs) is modulated presynaptically. We investigated the functional organization of this inhibition and its role in odor coding by imaging neurotransmitter release from OSNs in slices and in vivo in mice expressing synaptopHluorin, an optical indicator of vesicle exocytosis. Release from OSNs was strongly suppressed by heterosynaptic, intraglomerular inhibition. In contrast, inhibitory connections between glomeruli mediated only weak lateral inhibition of OSN inputs in slices and did not do so in response to odorant stimulation in vivo. Blocking presynaptic inhibition in vivo increased the amplitude of odorant-evoked input to glomeruli but had little effect on spatial patterns of glomerular input. Thus, intraglomerular inhibition limits the strength of olfactory input to the CNS, whereas interglomerular inhibition plays little or no role. This organization allows for control of input sensitivity while maintaining the spatial maps of glomerular activity thought to encode odorant identity.

PMID:
16364906
DOI:
10.1016/j.neuron.2005.10.031
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center