Send to

Choose Destination
Neuron. 2005 Dec 22;48(6):977-85.

Photoinactivation of native AMPA receptors reveals their real-time trafficking.

Author information

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.


AMPA receptors mediate the majority of the fast excitatory transmission in the central nervous system. Much evidence suggests that the fast trafficking of AMPA receptors into and out of the postsynaptic membrane underlies changes in synaptic strength thought to be necessary for higher cognitive functions such as learning and memory. Despite the abundance of research conducted in this area, a direct, real-time functional assay that measures the trafficking of native AMPA receptors has been lacking. Toward this aim, we use a photoreactive, irreversible antagonist of AMPA receptors, ANQX, to rapidly silence surface AMPA receptors and investigate directly the trafficking of native AMPA receptors in real time. We find that the most dynamic movement of AMPA receptors occurs by lateral movement across the surface of neurons. Fast cycling of surface AMPA receptors with receptors from internal stores does occur but exclusively at extrasynaptic somatic sites. The cycling of synaptic AMPA receptors only occurs on a much longer timescale with complete exchange requiring at least 16 hr. This cycling is not dependent on protein synthesis or action potential driven network activity. These data suggest a revised model of AMPA receptor trafficking wherein a large internal store of AMPA receptors exchanges rapidly with extrasynaptic somatic AMPA receptors, and these newly inserted AMPA receptors then travel laterally along dendrites to reside stably at synapses.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center