Send to

Choose Destination
Anal Sci. 2005 Sep;21(9):1091-7.

Nano-SIMS analysis of Mg, Sr, Ba and U in natural calcium carbonate.

Author information

Ocean Research Institute, The University of Tokyo, Nakanoku, Japan.


Concentrations of minor (Mg and Sr) and trace (Ba and U) elements in four natural calcium carbonate samples were first analyzed by inductively coupled plasma mass spectrometry (ICP-MS) after chemical dissolution and calibrated against a standard dolomite. Their homogeneities were checked by in situ laser ablation (LA) ICP-MS with 10-20 spots. The carbonate samples were measured by using a high lateral resolution secondary ion mass spectrometer (Nano-SIMS NS50). A approximately 4 nA O- primary beam was used to sputter a 5-6-microm diameter crater on the sample surface, and secondary positive ions were extracted for mass analysis using an accelerating voltage of 8 kV and a Mattauch-Herzog geometry. A multi-collector system was adjusted to detect 26Mg+, 43Ca+, 88Sr+, 138Ba+, 238U16O+ and 238U16O2+ ions at the same time. A resolving power of 2500-5000 at 10% peak height was attained by an entrance slit set at 40 microm, and each exit slit at 50 microm with adequate flat-topped peaks. The observed 26Mg/43Ca, 88Sr/43Ca, 138Ba/43Ca and 238U16O2/43Ca ratios agreed well with those measured by LA-ICP-MS. Foraminifera shells were analyzed at 5-6 microm scale by Nano-SIMS. There was a large variation of the Mg/Ca ratios, up to +/- 38%, even in a single fragment of the shell, suggesting that although the ratios provide a useful paleoceanographic proxy at bulk scale, they may reflect a more complex pattern at < 10 microm scale.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center