Format

Send to

Choose Destination
Cell Signal. 2006 Sep;18(9):1417-29. Epub 2005 Dec 19.

TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2.

Author information

1
Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research Demokritos, 153 10 Athens, Greece.

Abstract

Transforming growth factor-beta (TGF-beta) is a potent regulator of cell proliferation; interestingly its action is clearly cell type-dependent. In particular, it inhibits epithelial and endothelial cells' proliferation, while its action on many mesenchymal cells has been reported to be stimulatory. In this direction, we have recently shown that TGF-beta regulates the proliferation of normal human skin fibroblasts according to their developmental origin: i.e. it inhibits fetal fibroblasts, while it stimulates the proliferation of adult ones. Here, we present evidence on the mechanisms underlying this differential action. Concerning fetal fibroblasts, we have found that TGF-beta activates Protein Kinase A (PKA) and induces the expression of the cyclin-dependent kinase inhibitors (CKIs) p21(CIP1/WAF1) and p15(INK4B). Moreover, the specific PKA inhibitor H-89 blocks the induction of both CKIs and annuls the TGF-beta-mediated inhibitory effect, indicating the central role of PKA in this process. In contrast, in adult cells no PKA activation is observed. Moreover, TGF-beta stimulates cell proliferation by activating the MEK-ERK pathway, as the MEK inhibitor PD98059 blocks this effect. A specific neutralizing antibody against Fibroblast Growth Factor-2 (FGF-2) inhibits both ERK activation and the mitogenic activity of TGF-beta, indicating that the latter establishes an autocrine loop, via FGF-2, leading to cell proliferation. This loop requires FGF receptor-1 (FGFR-1), as its down-regulation by siRNA approach prevents TGF-beta from stimulating ERK-1/2 activation and DNA synthesis. In conclusion, the differential proliferative response of fetal and adult normal human skin fibroblasts to TGF-beta is regulated by distinct signaling pathways and furthermore it may provide information on the bimodal effect of this factor on cell proliferation, in general.

PMID:
16361081
DOI:
10.1016/j.cellsig.2005.11.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center