Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2006 Feb 10;356(1):209-21. Epub 2005 Dec 1.

Structural determinants of rotavirus subgroup specificity mapped by cryo-electron microscopy.

Author information

1
School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.

Abstract

The rotavirus double-layered particle (DLP) is a molecular machine that transcribes 11 genomic segments of double-stranded RNA into full-length mRNA segments during viral replication. DLPs from the human Wa strain of virus, belonging to subgroup II (SG II), possess a significantly reduced level of transcriptase activity compared to bovine UK DLPs that belong to subgroup I (SG I). Cryo-electron microscopy and icosahedral image analysis was used to define the structural basis for this difference in transcriptase activity and to derive three-dimensional density maps of bovine UK and human Wa DLPs at 26 angstroms and 28 angstroms resolution, respectively. The two rotavirus strains had the same diameter, T = 13 l icosahedral lattice symmetry and size of the VP6 trimers on the surface of the DLPs. However, the Wa particles displayed a remarkable absence of VP6 trimers surrounding each 5-fold vertex position. To further explore these structural differences, three-dimensional reconstructions were generated of DLPs decorated with Fab fragments derived from subgroup-specific monoclonal antibodies. The X-ray structures of VP6 and a generic Fab fragment were then docked into the cryo-electron microscopy density maps, which allowed us to propose at "pseudo-atomic" resolution the locations of the amino acid residues defining the subgroup-specific epitopes. Our results demonstrate a correlation between the structure of the VP6 layer and the transcriptase activity of the particles, and suggest that the stability of VP6 trimers, specifically those at the icosahedral 5-fold axes, may be critical for mRNA synthesis. Thus, subgroup specificity of rotavirus may reflect differences in the architecture of the double-layered particle, with resultant consequences for viral mRNA synthesis.

PMID:
16359700
DOI:
10.1016/j.jmb.2005.11.049
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center