Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Feb 17;281(7):4183-9. Epub 2005 Dec 14.

Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2.

Author information

Institute for Molecular Virology, Saint Louis University Health Sciences Center, Missouri 63110, USA.


CtBP family members, CtBP1 and CtBP2, are unique transcriptional regulators that adapt a metabolic enzyme fold, and their activities are regulated by NAD(H)-binding. CtBP1 is both cytoplasmic and nuclear, and its subcellular localization is regulated by sumoylation, phosphorylation, and binding to a PDZ protein. In contrast, we showed that CtBP2 is exclusively nuclear. CtBP1 and CtBP2 are highly similar, but differ at the N-terminal 20 amino acid region. Substitution of the N-terminal domain of CtBP1 with the corresponding CtBP2 domain confers a dominant nuclear localization pattern to CtBP1. The N-terminal domain of CtBP2 contains three Lys residues. Our results show that these Lys residues are acetylated by the nuclear acetylase p300. Although all three Lys residues of CtBP2 (Lys-6, Lys-8, and Lys-10) appear to be acetylated, acetylation of Lys-10 is critical for nuclear localization. CtBP2 with a single amino acid substitution at Lys-10 (K10R) is predominantly localized in the cytoplasm. The cytoplasmic localization of the K10R mutant is correlated with enhanced nuclear export that is inhibited by leptomycin B. Furthermore, lack of acetylation at Lys-10 renders CtBP2 to be more efficient in repression of the E-cadherin promoter. Our studies have revealed the important roles of acetylation in regulating subcellular localization and transcriptional activity of CtBP2.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center