Send to

Choose Destination
Methods Inf Med. 1992 Jun;31(2):106-16.

Toward normative expert systems: Part II. Probability-based representations for efficient knowledge acquisition and inference.

Author information

Department of Computer Science, University of California, Los Angeles.


We address practical issues concerning the construction and use of decision-theoretic or normative expert systems for diagnosis. In particular, we examine Pathfinder, a normative expert system that assists surgical pathologists with the diagnosis of lymph-node diseases, and discuss the representation of dependencies among pieces of evidence within this system. We describe the belief network, a graphical representation of probabilistic dependencies. We see how Pathfinder uses a belief network to construct differential diagnosis efficiently, even when there are dependencies among pieces of evidence. In addition, we introduce an extension of the belief-network representation called a similarity network, a tool for constructing large and complex belief networks. The representation allows a user to construct independent belief networks for subsets of a given domain. A valid belief network for the entire domain can then be constructed from the individual belief networks. We also introduce the partition, a graphical representation that facilitates the assessment of probabilities associated with a belief network. We show that the similarity-network and partition representations made practical the construction of Pathfinder.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center