Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2005 Dec 22;109(50):11443-52.

Solvent effects on interfacial electron transfer from Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 to nanoparticulate TiO2: spectroscopy and solar photoconversion.

Author information

1
Department of Chemistry, Washington State University, Box 99164-4630, Pullman, Washington 99164-4630, USA.

Abstract

Resonance Raman spectra are reported for Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 (commonly called "N3") in ethanol solution and adsorbed on nanoparticulate colloidal TiO2 in ethanol (EtOH) and in acetonitrile (ACN), at wavelengths within the visible absorption band of the dye. Raman cross sections of free N3 in EtOH are found to be similar to those of N3 adsorbed on colloidal TiO2 in EtOH, and are generally lower than those of N3 on TiO2 in ACN. Strong electronic coupling mediated by surface states results in red-shifted absorption spectra and enhanced Raman signals for N3 adsorbed on nanocolloidal TiO2 in ACN compared to EtOH. In contrast, the absorption spectrum of N3 on nanocrystalline TiO2 in contact with solvent is similar for ACN and EtOH. Wavelength-dependent depolarization ratios for N3 Raman bands of both free and adsorbed N3 reveal resonance enhancement via two or more excited electronic states. Luminescence spectra of N3 adsorbed on nanocrystalline films of TiO2 and ZrO2 in contact with solvent reveal that the quantum yield of electron injection phi(ET) into TiO2 decreases in the order ACN > EtOH > DMSO. Dye-sensitized solar cells were fabricated with N3 adsorbed on nanocrystalline films of TiO2 in contact with ACN, EtOH, and DMSO solutions containing LiI/LiI3 electrolyte. Photoconversion efficiencies eta were found to be 2.6% in ACN, 1.3% in DMSO, and 0.84% in EtOH. Higher short circuit currents are found in cells using ACN, while the maximum voltage is found to be largest in DMSO. It is concluded that the increased photocurrent and quantum yield of interfacial electron transfer in acetonitrile as compared to ethanol and DMSO is primarily the result of faster electron injection of N3 when adsorbed on TiO2 in the presence of ACN as opposed to EtOH or DMSO.

PMID:
16354034
DOI:
10.1021/jp053595z
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center