Send to

Choose Destination
See comment in PubMed Commons below
Mol Plant Microbe Interact. 2005 Nov;18(11):1148-60.

Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae.

Author information

Faculty of Agriculture, Graduate School of Science and Technology, Kobe University, Nada, Japan.


The significance of AVR1-CO39, an avirulence gene of the blast fungus corresponding to Pi-CO39(t) in rice cultivars, during the evolution and differentiation of the blast fungus was evaluated by studying its function and distribution in Pyricularia spp. When the presence or absence of AVR1-CO39 was plotted on a dendrogram constructed from ribosomal DNA sequences, a perfect parallelism was observed between its distribution and the phylogeny of Pyricularia isolates. AVR1-CO39 homologs were exclusively present in one species, Pyricularia oryzae, suggesting that AVR1-CO39 appeared during the early stage of evolution of P. oryzae. Transformation assays showed that all the cloned homologs tested are functional as an avirulence gene, indicating that selection has maintained their function. Nevertheless, Oryza isolates (isolates virulent on Oryza spp.) in P. oryzae were exceptionally noncarriers of AVR1-CO39. All Oryza isolates suffered from one of the two types of known rearrangements at the Avr1-CO39 locus (i.e., G type and J type). These types were congruous to the two major lineages of Oryza isolates from Japan determined by MGR586 and MAGGY. These results indicate that AVR1-CO39 was lost during the early stage of evolution of the Oryza-specific subgroup of P. oryzae. Interestingly, its corresponding resistance gene, Pi-CO39(t), is not widely distributed in Oryza spp.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center