Send to

Choose Destination
Zoology (Jena). 2004;107(1):75-86.

Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity.

Author information

Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia.


The Nemertodermatida are a small group of microscopic marine worms. Recent molecular studies have demonstrated that they are likely to be the earliest extant bilaterian animals. What was the nervous system (NS) of a bilaterian ancestor like? In order to answer that question, the NS of Nemertoderma westbladi was investigated by means of indirect immunofluorescence technique and confocal scanning laser microscopy. The antibodies to a flatworm neuropeptide GYIRFamide were used in combination with anti-serotonin antibodies and phalloidin-TRITC staining. The immunostaining revealed an entirely basiepidermal NS. A ring lying outside the body wall musculature at the level of the statocyst forms the only centralisation, the "brain". No stomatogastric NS has been observed. The GYIRFamide immunoreactive part of the "brain" is formed of loosely packed nerve fibres with multiple small neurones and a few large ones. The peptidergic and aminergic patterns of the NS do not correspond to each other: the former is more developed on the ventral side, the latter is more pronounced on the dorsal side. A pair of GYIRFamide immunoreactive nerve cords innervates the ventral side of the animal, the mouth and the male genital opening. The nemertodermatids studied to-date display no common NS pattern. Possible synapomorphies of the Acoelomorpha are discussed. The study demonstrates that the nemertodermatid NS possesses a number of plesiomorphic features and appears more primitive than the NS in other worms, except the Xenoturbellida. The bilaterian ancestor supposedly possessed only a basiepidermal nerve net and had no centralised brain-like structures and no stomatogastric NS.


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center