Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1994 Sep;60(9):3167-74.

Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus spp.

Author information

1
Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas 78373-1267.

Abstract

Cyanophages infecting marine Synechococcus cells were frequently very abundant and were found in every seawater sample along a transect in the western Gulf of Mexico and during a 28-month period in Aransas Pass, Tex. In Aransas Pass their abundance varied seasonally, with the lowest concentrations coincident with cooler water and lower salinity. Along the transect, viruses infecting Synechococcus strains DC2 and SYN48 ranged in concentration from a few hundred per milliliter at 97 m deep and 83 km offshore to ca. 4 x 10 ml near the surface at stations within 18 km of the coast. The highest concentrations occurred at the surface, where salinity decreased from ca. 35.5 to 34 ppt and Synechococcus concentrations were greatest. Viruses infecting strains SNC1, SNC2, and 838BG were distributed in a similar manner but were much less abundant (<10 to >5 x 10 ml). When Synechococcus concentrations exceeded ca. 10 ml, cyanophage concentrations increased markedly (ca. 10 to > 10 ml), suggesting that a minimum host density was required for efficient viral propagation. Data on the decay rate of viral infectivity d (per day), as a function of solar irradiance I (millimoles of quanta per square meter per second), were used to develop a relationship (d = 0.2610I - 0.00718; r = 0.69) for conservatively estimating the destruction of infectious viruses in the mixed layer of two offshore stations. Assuming that virus production balances losses and that the burst size is 250, ca. 5 to 7% of Synechococcus cells would be infected daily by viruses. Calculations based on contact rates between Synechococcus cells and infectious viruses produce similar results (5 to 14%). Moreover, balancing estimates of viral production with contact rates for the farthest offshore station required that most Synechococcus cells be susceptible to infection, that most contacts result in infection, and that the burst size be about 324 viruses per lytic event. In contrast, in nearshore waters, where ca. 80% of Synechococcus cells would be contacted daily by infectious cyanophages, only ca. 1% of the contacts would have to result in infection to balance the estimated virus removal rates. These results indicate that cyanophages are an abundant and dynamic component of marine planktonic communities and are probably responsible for lysing a small but significant portion of the Synechococcus population on a daily basis.

PMID:
16349372
PMCID:
PMC201785
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center