Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1993 Oct;59(10):3393-9.

Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater.

Author information

Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.


Recent reports documenting very high viral abundances in seawater have led to increased interest in the role of viruses in aquatic environments and a resurgence of the hypothesis that viruses are significant agents of bacterial mortality. Synechococcus spp., small unicellular cyanobacteria that are important primary producers at the base of the marine food web, were used to assess this hypothesis. We isolated a diverse group of Synechococcus phages that at times reach titers of between 10 and 10 cyanophages per ml in both inshore and offshore waters. However, despite their diversity and abundance, we present evidence in support of the hypothesis that lytic phages have a negligible effect in regulating the densities of marine Synechococcus populations. Our results indicate that these bacterial communities are dominated by cells resistant to their co-occurring phages and that these viruses are maintained by scavenging on the relatively rare sensitive cells in these communities.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center