Format

Send to

Choose Destination
Appl Environ Microbiol. 1992 Jan;58(1):353-8.

Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production.

Author information

1
Analytical Chemistry and Microbiology Departments, University College, Cork, Ireland.

Abstract

Pseudomonas sp. strain F113 was isolated from the rhizosphere of sugar beets and shown to inhibit a range of plant pathogenic fungi by producing an antibioticlike compound. An antibiotic-negative mutant strain, F113G22, was generated by transposon mutagenesis. This mutant has lost the ability to inhibit both bacterial and fungal microorganisms on high-iron medium. The antibioticlike compound was subsequently identified as 2,4-diacetylphloroglucinol (DAPG), and a high-pressure liquid chromatographic assay was developed for to detect it quantitatively in growth culture media and soil. The growth temperature had a direct bearing on DAPG production by strain F113, with maximum production at 12 degrees C. The iron concentration, pH, and oxygen had no influence on DAPG production by strain F113 under the assay conditions used. However, a low ratio of culture volume to surface area available to the microbe in the growth container was critical for optimum DAPG production. Different types of carbon sources influenced DAPG production by strain F113 to various degrees. For example, sucrose, fructose, and mannitol promoted high yields of DAPG by strain F113, whereas glucose and sorbose resulted in very poor DAPG production.

PMID:
16348633
PMCID:
PMC195214

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center