Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1986 Aug;52(2):225-33.

Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients.

Author information

1
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, and Institute of Ecology and Genetics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark.

Abstract

Recently developed techniques involving opposed, gel-stabilized gradients of O(2) and H(2)S permit cultivation of a marine Beggiatoa strain as a chemolithoautotroph which uses gliding motility to precisely track the interface between H(2)S and O(2). In the current study with microelectrodes, vertical profiles of H(2), O(2), and pH were measured in replicate cultures grown for various intervals. After an initial period of exponential biomass increase (doubling time, 11 h), linear growth prevailed throughout much of the time course. This H(2)S-limited growth was followed by a transition to stationary phase when the declining H(2)S flux was sufficient only to supply maintenance energy. During late-exponential and linear growth phases, the Beggiatoa sp. consumed a constant 0.6 mol of H(2)S for each 1.0 mol of O(2), the ratio anticipated for balanced lithoautotrophic growth at the expense of complete oxidation of H(2)S to SO(4). Over the entire range of conditions studied, this consumption ratio varied by approximately twofold. By measuring the extent to which the presence of the bacterial plate diminished the overlap of O(2) and H(2)S, we demonstrated that oxidation of H(2)S by Beggiatoa sp. is approximately 3 orders of magnitude faster than spontaneous chemical oxidation. By integrating sulfide profiles and comparing sulfide consumed with biomass produced, a growth yield of 8.4 g (dry weight) mol of H(2)S was computed. This is higher than that found for sulfide-grown thiobacilli, indicating very efficient growth of Beggiatoa sp. as a chemoautotroph. The methods used here offer a unique opportunity to determine the yield of H(2)S-oxidizing chemolithoautotrophs while avoiding several problems inherent in the use of homogeneous liquid culture. Finally, by monitoring time-dependent formation of H(2)S profiles under anoxic conditions, we demonstrate a method for calculating the molecular diffusion coefficient of soluble substrates in gel-stabilized media.

PMID:
16347121
PMCID:
PMC203507
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center