Send to

Choose Destination
Nat Cell Biol. 2006 Jan;8(1):46-54. Epub 2005 Dec 11.

Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells.

Author information

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.


Previous studies provide evidence for an endocytic mechanism in mammalian cells that is distinct from both clathrin-coated pits and caveolae, and is not inhibited by overexpression of GTPase-null dynamin mutants. This mechanism, however, has been defined largely in these negative terms. We applied a ferro-fluid-based purification of endosomes to identify endosomal proteins. One of the proteins identified in this way was flotillin-1 (also called reggie-2). Here, we show that flotillin-1 resides in punctate structures within the plasma membrane and in a specific population of endocytic intermediates. These intermediates accumulate both glycosylphosphatidylinositol (GPI)-linked proteins and cholera toxin B subunit. Endocytosis in flotillin-1-containing intermediates is clathrin-independent. Total internal reflection microscopy and immuno-electron microscopy revealed that flotillin-1-containing regions of the plasma membrane seem to bud into the cell, and are distinct from clathrin-coated pits and caveolin-1-positive caveolae. Flotillin-1 small interfering RNA (siRNA) inhibited both clathrin-independent uptake of cholera toxin and endocytosis of a GPI-linked protein. We propose that flotillin-1 is one determinant of a clathrin-independent endocytic pathway in mammalian cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center