Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2005 Dec 7;25(49):11313-21.

Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer's disease.

Author information

1
Department of Biochemistry and Molecular Biology, Program in Molecular, Cellular, and Integrative Neuroscience, Colorado State University, Fort Collins, Colorado 80523, USA.

Erratum in

  • J Neurosci. 2006 Jan 4;26(1):354.

Abstract

Rod-like inclusions (rods), composed of actin saturated with actin depolymerizing factor (ADF)/cofilin, are induced in hippocampal neurons by ATP depletion, oxidative stress, and excess glutamate and occur in close proximity to senile plaques in human Alzheimer's disease (AD) brain (Minamide et al., 2000). Here, we show rods are found in brains from transgenic AD mice. Soluble forms of amyloid beta (Abeta(1-42)) induce the formation of rods in a maximum of 19% of cultured hippocampal neurons in a time- and concentration-dependent manner. Approximately one-half of the responding neurons develop rods within 6 h or with as little as 10 nM Abeta(1-42). Abeta(1-42) induces the activation (dephosphorylation) of ADF/cofilin in neurons that form rods. Vesicles containing amyloid precursor protein (APP), beta-amyloid cleavage enzyme, and presenilin-1, a component of the gamma-secretase complex, accumulate at rods. The beta-secretase-cleaved APP (either beta-C-terminal fragment of APP or Abeta) also accumulates at rods. These results suggest that rods, formed in response to either Abeta or some other stress, block the transport of APP and enzymes involved in its processing to Abeta. These stalled vesicles may provide a site for producing Abeta(1-42), which may in turn induce more rods in surrounding neurons, and expand the degenerative zone resulting in plaque formation.

PMID:
16339026
DOI:
10.1523/JNEUROSCI.3711-05.2005
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center