Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chromatogr A. 2006 Jan 27;1103(2):235-42. Epub 2005 Dec 6.

Separation of branched polystyrene by comprehensive two-dimensional liquid chromatography.

Author information

1
Department of Chemistry and Polymer Research Institute, Pohang University of Science and Technology, Pohang 790-784, South Korea.

Abstract

Branched polystyrenes (PS) featuring a bivariate distribution in the molecular weight and in the number of branches were characterized by comprehensive two-dimensional liquid chromatography (2D-LC). The branched PS were prepared by anionic polymerization using n-butyl Li as an initiator and a subsequent linking reaction with p-(chlorodimethylsilyl)styrene (CDMSS). The n-butyl Li initiator yields polystyryl anions with broad molecular weight distribution (MWD) and the linking reaction with CDMSS yields branched PS with different number of branches. For the first dimension (1st-D) separation, reversed-phase temperature gradient interaction chromatography (RP-TGIC) was employed to separate the branched polymer according to mainly the molecular weight. In the second dimension (2nd-D) separation, the effluents from the RP-TGIC separation are subjected to liquid chromatography at chromatographic critical conditions (LCCC), in which the separation was carried out at the critical condition of linear homo-PS to separate the branched PS in terms of the number of branches. The 2D-LC resolution of RP-TGICxLCCC combination worked better than the common LCCCxsize-exclusion chromatography (SEC) configuration due to the higher resolution of RP-TGIC in molecular weight than SEC. Furthermore, by virtue of using the same eluent in RP-TGIC and LCCC (only the column temperature is different), RP-TGICxLCCC separation is free from possible 'break through' and large system peak problems. This type of 2D-LC separation could be utilized efficiently for the analysis of branched polymers with branching units distinguishable by LC separation.

PMID:
16337215
DOI:
10.1016/j.chroma.2005.11.050
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center