Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1992 Jul 6;1101(1):48-56.

Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803.

Author information

1
Service de Bioénergétique (URA CNRS 1290), Gif sur Yvette, France.

Abstract

The unicellular cyanobacterium Synechocystis sp PCC 6803 is capable of synthesizing two different Photosystem-I electron acceptors, ferredoxin and flavodoxin. Under normal growth conditions a [2Fe-2S] ferredoxin was recovered and purified to homogeneity. The complete amino-acid sequence of this protein was established. The isoelectric point (pI = 3.48), midpoint redox potential (Em = -0.412 V) and stability under denaturing conditions were also determined. This ferredoxin exhibits an unusual electrophoretic behavior, resulting in a very low apparent molecular mass between 2 and 3.5 kDa, even in the presence of high concentrations of urea. However, a molecular mass of 10,232 Da (apo-ferredoxin) is calculated from the sequence. Free thiol assays indicate the presence of a disulfide bridge in this protein. A small amount of ferredoxin was also found in another fraction during the purification procedure. The amino-acid sequence and properties of this minor ferredoxin were similar to those of the major ferredoxin. However, its solubility in ammonium sulfate and its reactivity with antibodies directed against spinach ferredoxin were different. Traces of flavodoxin were also recovered from the same fraction. The amount of flavodoxin was dramatically increased under iron-deficient growth conditions. An acidic isoelectric point was measured (pI = 3.76), close to that of ferredoxin. The midpoint redox potentials of flavodoxin are Em1 = -0.433 V and Em2 = -0.238 V at pH 7.8. Sequence comparison based on the 42 N-terminal amino acids indicates that Synechocystis 6803 flavodoxin most likely belongs to the long-chain class, despite an apparent molecular mass of 15 kDa determined by SDS-PAGE.

PMID:
1633177
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center