Format

Send to

Choose Destination
Neuroscience. 2006 Apr 28;139(1):299-309. Epub 2005 Dec 1.

Sequential neural processes of tactile-visual crossmodal working memory.

Author information

1
Department of Neurosurgery, School of Medicine, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA.

Abstract

Working memory is essential to learning and performing sensory-motor behaviors that in many situations require the integration of stimuli of one modality with stimuli of another. In the present study, we focused on the neural mechanisms underlying crossmodal working memory. We hypothesized that in performance of the tactile crossmodal working memory task, there would be sequentially discrete task-correlated neural activities representing the processes of crossmodal working memory. Scalp-recorded event-related potentials were collected from 15 electrodes in humans performing each of four tasks: tactile-tactile unimodal delayed matching-to-sample task, tactile-visual crossmodal delayed matching-to-sample task, tactile unimodal control spatial task, and tactile crossmodal control spatial task. Two positive event-related potential peaks were observed during the delay of the task. One peak (late positive component-1) was at about 330 ms after the onset of the tactile stimulus, and the other (late positive component-2) was at about 600 ms. Late positive component-1 was observed in all four tasks. There was no significant difference in late positive component-1 either between the unimodal tasks, or between the crossmodal tasks, but late positive component-1 was significantly larger in the crossmodal tasks than that in the unimodal tasks, and showed a specific pattern of larger activity over parietal areas than activity over frontal areas. Late positive component-2 was not observed in the unimodal matching task but was observed in all other three tasks over parietal areas. During the late delay (1000 ms-1500 ms), significant differences in negative potentials (late negative component) were found between the tasks. The present study shows sequential changes in event-related potentials during the retention period of working memory tasks. It indicates that in performance of a crossmodal working memory task, there are sequentially discrete neural processes that may represent neural activities related to different cognitive functions, such as crossmodal transfer of information, and the working memory of the stimulus.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center