Send to

Choose Destination
Inorg Chem. 2005 Dec 12;44(25):9305-13.

Remote and adjacent excited-state electron transfer at TiO2 interfaces sensitized to visible light with Ru(II) compounds.

Author information

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA.


The ruthenium polypyridyl compounds, Ru(dpp)2(deeb)(PF6)2 (Ru-deeb) and cis-Ru(dpp)2(eina)2(PF6)2 (Ru-eina), where dpp is 4,7-diphenyl-1,10-phenanthroline, deeb is 4,4'-diethyl ester-2,2'-bipyridine, and eina is 4-ethyl ester pyridine, have been prepared and characterized to sensitize nanocrystalline TiO2 (anatase) thin films. In neat acetonitrile at room temperature, Ru-deeb was emissive with lambdaem=675 nm, tau=780 ns, and emission quantum yield phiem=0.067, whereas Ru-eina was nonemissive with tau<10 ns. The short lifetime and observed photochemistry for Ru-eina are consistent with the presence of low-lying ligand-field (LF) excited states. The metal-to-ligand charge transfer (MLCT) excited states of Ru-deeb were found to be localized on the surface-bound deeb ligand, and on the remote dpp ligand for Ru-eina. Interfacial proton concentration was employed to tune the relative sensitizer-semiconductor energetics. Injection quantum yields, phiinj, varied from approximately 0.2 at pH=5 to approximately 1 at pH=1, with a slope of approximately 0.15/pH for both compounds. At pH=12, long-lived excited states were observed with phiinj<0.05. At pH<or=2, phiinj became temperature-dependent for Ru-eina, but not for Ru-deeb. A mechanism is proposed wherein population of LF states at elevated temperatures lowers phiinj.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center