Format

Send to

Choose Destination
See comment in PubMed Commons below
J Vet Med B Infect Dis Vet Public Health. 2005 Sep-Oct;52(7-8):335-9.

Pathogenesis of parvovirus B19 infection: host gene variability, and possible means and effects of virus persistence.

Author information

1
Department of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, London SW17 0RE, UK. jkerr@sgul.ac.uk

Abstract

Since conducting follow-up studies of patients with acute symptomatic parvovirus B19 infection which showed that a significant proportion of patients develop prolonged arthritis and chronic fatigue syndrome (CFS), we have become interested in the mechanisms of this phenomenon. We showed that these cases have high levels of pro-inflammatory cytokines in their circulation and that this correlates with the symptoms. However, the underlying mechanisms were not apparent, and we have used various approaches to begin studying this phenomenon. DNA polymorphisms were looked for and several were shown to be more common in these subjects compared with controls; these occur within genes of both the immune response [human leucocyte antigen (HLA)-DRB1, HLA-B, transforming growth factor (TGF)-beta1] and those involved in several other cellular functions (predominantly the cytoskeleton and cell adhesion). Interestingly, one particular single-nucleotide polymorphism (SNP) which is associated with symptomatic B19 infection occurs in the Ku80 gene which has recently been shown to be a B19 co-receptor. B19 persistence is probably the key to this phenomenon, and some new data are presented on short regions of sequence homology (17-26 bp) between human, mouse and rat parvoviruses and their respective hosts which occur in many host genes. This homology may provide a foothold for virus persistence and may also play a role in the genesis of disease through gene disruption. Finally, we used microarrays and TaqMan real-time polymerase chain reaction in 108 normal persons to study human gene expression in persons who are B19-seropositive versus B19-seronegative (age- and sex-matched) to examine the hypothesis that gene regulation may be altered in subjects harbouring the B19 virus DNA. Six genes were found to be differentially expressed with roles in the cytoskeleton (SKIP, MACF1, SPAG7, FLOT1), integrin signalling (FLOT1, RASSF5), HLA class III (c6orf48), and tumour suppression (RASSF5). These results have implications not only for B19 but also for other persistent viruses as well and confirmation is required. In conclusion, these disparate findings contribute to our understanding of the pathogenesis of B19 disease. We are using these studies as a starting point to study the phenomenon of chronic immune activation following B19 infection.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center