Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Feb 10;281(6):3698-710. Epub 2005 Nov 28.

Lysosomal sialidase (neuraminidase-1) is targeted to the cell surface in a multiprotein complex that facilitates elastic fiber assembly.

Author information

Cardiovascular Research Program, The Hospital for Sick Children, University of Toronto, Ontario, Canada.


We have established previously that the 67-kDa elastin-binding protein (EBP), identical to the spliced variant of beta-galactosidase, acts as a recyclable chaperone that facilitates secretion of tropoelastin. (Hinek, A., Keeley, F. W., and Callahan, J. W. (1995) Exp. Cell Res. 220, 312-324). We now demonstrate that EBP also forms a cell surface-targeted molecular complex with protective protein/cathepsin A and sialidase (neuraminidase-1), and provide evidence that this sialidase activity is a prerequisite for the subsequent release of tropoelastin. We found that treatment with sialidase inhibitors repressed assembly of elastic fibers in cultures of human skin fibroblasts, aortic smooth muscle cells, and ear cartilage chondrocytes and caused impaired elastogenesis in developing chick embryos. Fibroblasts derived from patients with congenital sialidosis (primary deficiency of neuraminidase-1) and galactosialidosis (secondary deficiency of neuraminidase-1) demonstrated impaired elastogenesis, which could be reversed after their transduction with neuraminidase-1 cDNA or after treatment with bacterial sialidase, which has a similar substrate specificity to human neuraminidase-1. We postulate that neuraminidase-1 catalyzes removal of the terminal sialic acids from carbohydrate chains of microfibrillar glycoproteins and other adjacent matrix glycoconjugates, unmasking their penultimate galactosugars. In turn, the exposed galactosugars interact with the galectin domain of EBP, thereby inducing the release of transported tropoelastin molecules and facilitating their subsequent assembly into elastic fibers.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center